A dynamic discrete dislocation plasticity method for the simulation of plastic relaxation under shock loading
نویسندگان
چکیده
In this article, it is demonstrated that current methods of modelling plasticity as the collective motion of discrete dislocations, such as two-dimensional discrete dislocation plasticity (DDP), are unsuitable for the simulation of very high strain rate processes (106 s−1 or more) such as plastic relaxation during shock loading. Current DDP models treat dislocations quasi-statically, ignoring the time-dependent nature of the elastic fields of dislocations. It is shown that this assumption introduces unphysical artefacts into the system when simulating plasticity resulting from shock loading. This deficiency can be overcome only by formulating a fully time-dependent elastodynamic description of the elastic fields of discrete dislocations. Building on the work of Markenscoff & Clifton, the fundamental time-dependent solutions for the injection and non-uniform motion of straight edge dislocations are presented. The numerical implementation of these solutions for a single moving dislocation and for two annihilating dislocations in an infinite plane are presented. The application of these solutions in a two-dimensional model of timedependent plasticity during shock loading is outlined here and will be presented in detail elsewhere.
منابع مشابه
Calibration of Hardening Rules for Cyclic Plasticity
In the realm of multi-axial ratcheting, a step by step mathematical approach is developed for the parameter determination of decomposed kinematic hardening rules. For this purpose, key characteristics are mathematically derived for these hardening rules under multi-axial loading. These characteristics are then utilized to develop expressions which relate the loading history to the accumulated p...
متن کاملDetermination of Residual Stress for Single and Double Autofrettage of Thick-walled FG Cylinders Subjected to Dynamic Loading
In the present article a numerical procedure is developed for dynamic analysis of single and double autofrettage of thick–walled FG cylinders under transient loading. The governing differential equations are discretized and presented in explicit Lagrangian formalism. The explicit transient solution of discrete equations are obtained on the meshed region and results for stress and strain distrib...
متن کاملBoundary Layers in Constrained Plastic Flow: Comparison of Nonlocal and Discrete Dislocation Plasticity
Simple shear of a constrained strip is analyzed using both discrete dislocation plasticity and strain gradient crystal plasticity theory. Both single slip and symmetric double slip are considered. The loading is such that for a local continuum description of plastic flow the deformation state is one of homogeneous shear. In the discrete dislocation formulation the dislocations are all of edge c...
متن کاملDislocation mechanics of copper and iron in high rate deformation tests
Different dislocation processes are shown to be operative under high rate loading by impact-induced shock tests as compared with shockless isentropic compression experiments ICEs . Under shock loading, the plastic deformation rate dependence of the flow stress of copper is attributed to dislocation generation at the propagating shock front, while in shockless ICEs, the rate dependence is attrib...
متن کاملModelling plastic deformation in a single-crystal nickel-based superalloy using discrete dislocation dynamics
Background: Nickel-based superalloys are usually exposed to high static or cyclic loads in non-ambient environment, so a reliable prediction of their mechanical properties, especially plastic deformation, at elevated temperature is essential for improved damage-tolerance assessment of components. Methods: In this paper, plastic deformation in a single-crystal nickel-based superalloy CMSX4 at el...
متن کامل